變頻器在應用中的故障處理實例
因變頻器和交流電機組成的交流調速系統具有的優良的調速性能,在其應用范圍不斷擴展的同時,也會使我們在工作中遇到各種原因造成的故障,借助于變頻器完善的保護功能,并通過積累經驗來提高處理變頻器故障的能力,會明顯地縮短設備的熱停工時間并對在舊系統的改造、新項目的應用中應注意的事項提供有益的參考。
1 引言
因變頻器和交流電機組成的交流調速系統具有的優良的調速性能,在其應用范圍不斷擴展的同時,也會使我們在工作中遇到各種原因造成的故障,借助于變頻器完善的保護功能,并通過積累經驗來提高處理變頻器故障的能力,會明顯地縮短設備的熱停工時間并對在舊系統的改造、新項目的應用中應注意的事項提供有益的參考。下面對數例變頻器故障原因的分析僅代表個人意見,供大家參考。
2 變頻器故障實例的處理
(1) AEG Multiverter122/150-400變頻器在啟動時直流回路過壓跳閘
這臺變頻器并非每次啟動都會過壓跳閘。檢查時發現變頻器在上電但沒有合閘信號時,直流回路電壓即達360V,該型變頻器直流回路的正極串接1臺接觸器,在有合閘信號時經過預充電過程后吸合,故懷疑預充電回路IGBT性能不良,斷開預充電回路IGBT,情況依舊。用萬用表檢查變頻器輸出端時其對地阻值很小,查至現場發現電機接線盒被水淋濕,干燥處理后,變頻器工作正常。
由于電機接線盒被水淋濕,直流回路負極的對地漏電流經接線盒及變頻器逆變器中的續流二極管給直流回路的電容充電,這種情況合閘通常理解應該為過流跳閘而實際為過壓跳閘。本人認為,啟動時變頻器輸出電壓和頻率是逐漸上升的,電機被水淋濕后,會造成輸出電流的變化率很高,從而引起直流回路過壓。
(2) 控制輥道電機的AEG Maxiverter-170/380變頻器出現速度反饋值大于速度設定值經觀察發現:
a) 在軋鋼過程中不存在這種情況,當鋼離開輥道后,才出現這種情況;
b) 當速度反饋值大于速度設定值時,直流回路電壓為額定電壓的125%,超過115%的極限設定值;
c) 變頻器的進線電壓已超過上限;
在軋鋼過程中,該變頻器控制的輥道電機將升速,當鋼離開輥道后輥道電機速度降至原來的速度,因這臺變頻器未裝設制動裝置,減速時是通過電壓調節器限制制動電流以保持直流回路電壓不超過115%的極限設定值(缺省值),因進線電壓過高,直流回路電壓超過了設定的極限值,在減速時電壓調節器起作用,造成制動電流很小,電機轉速降不下來,而在軋鋼時,電網的負載加重,直流回路電壓低于115%的極限設定值,制動功能恢復正常。在當時無法降低電網電壓的情況下,將直流回路電壓極限設定值增至127% 后,變頻器工作正常。在停產檢修時,我們根據電網的情況改變了變壓器的檔位,使變頻器的進線電壓在允許的范圍內,此后變頻器工作正常。
(3) AEG Multiverter22/27-400變頻器上電后,操作面板上的液晶顯示屏顯示正常,但ready指示燈不亮,變頻器不能合閘
查看變頻器菜單中的故障記錄時未發現有故障,而對操作面板上各按鍵的操作在事件記錄中則有記錄。檢查變頻器內A10主板、A22電源板上的LED指示燈均正常,用試電筆測變頻器的進線電源,發現有一相顯示不正常,用萬用表測量三相結果為:Vab=390V,Vac=190V,Vbc=190V。經檢查系進線端子排處接觸不良。
ready指示燈是變頻器內各種狀態信息的綜合反映,當它不亮時可提示維護人員注意變頻器尚未就緒。此時在進線電源不正常時變頻器的故障記錄中未能反映未就緒的原因,可能與電路的設計有關。
(4) 調試過程中西門子MIDIMASTER Vector(22kW)變頻器啟動后即過流跳閘
變頻器供貨方與被控設備的供貨方因溝通上的原因,在容量上不匹配(電機功率為30kW)。將變頻器的控制模式選為矢量控制,在輸入電機參數時,變頻器自動將電機的額定電流60A限定在45A,電機銘牌上無功率因數的大小,按變頻器手冊的要求,將其設定為0,在作自動辨識(P088=1)后啟動電機時,變頻器過流跳閘??紤]到匹配上的原因,將控制模式改為V/F控制,情況依舊。后檢查電機參數時,發現功率因數為1.1,將其改為0.85后,變頻器工作正常。
因容量不匹配,變頻器依據輸入的電機參數進行計算時會產生不正確的結果,在遇到這種情況而暫時無法解決匹配問題時,要在自動辨識后檢查是否存在不合適的參數。
(5) 西門子6SE70系列變頻器的PMU面板液晶顯示屏上顯示字母“E”
出現這種情況時,變頻器不能工作,按P鍵及重新停送電均無效,查操作手冊又無相關的介紹,在檢查外接DC24V電源時,發現電壓較低,解決后,變頻器工作正常。